The vibrations of the organ of Corti are dominated in vivo by longitudinal movements | Wbactive

  • Jost, WA Fundamentals of Hearing: An Introduction (Holt Rinehart and Winston, 1985).

  • Slepecky, NB Structure of the Mammalian Cochlea. in the The snail (Eds. Dallos, P., Popper, AN & Fay, RR) vol. 8 44-129 (Springer, 1996).

  • Robles, L. & Ruggero, MA Mechanics of the mammalian cochlea. physiol. rev 811305-1352 (2001).

    Article CAS PubMed Google Scholar

  • von Bekesy, G. listening experiments. (McGraw-Hill, 1960).

  • Choudhury, N. et al. Low-coherence interferometry of the cochlear partition. Listen. resolution 2201-9 (2006).

    Article PubMed Google Scholar

  • Wang, RK & Nuttall, AL Subnanometer-scale phase-sensitive optical coherence tomography imaging of tissue motion within the organ of Corti: a preliminary study. J. Biomed. Option. fifteen056005 (2010).

    Article PubMed PubMed CentralGoogle Scholar

  • Cooper, NP, Vavakou, A. & van der Heijden, M. Vibrational hotspots reveal longitudinal funnels of sound-evoked motion in the mammalian cochlea. nat. commune. 93054 (2018).

  • Dewey, JB, Applegate, BE & Oghalai, JS Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of forces generated by outer hair cells. J. Neurosci. 391805-1816 (2019).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • Dewey, JB, Altoè, A, Shera, CA, Applegate, BE & Oghalai, JS Electromotility of the cochlea’s outer hair cell amplifies organ of Corti motion cycle-by-cycle at high frequencies in vivo. Proc. Natl. Acad. Science. 118e2025206118 (2021).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • He, W. & Ren, T. The origin of mechanical harmonic distortion within the Organ of Corti in living gerbil-cochleae. commune biol. 41008 (2021).

  • Ren, T., He, W. & Kemp, D. Reticular lamina and basilar membrane oscillations in living mouse cochleae. Proc. Natl. Acad. Science. 1139910-9915 (2016).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • Lee, HY et al. Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J. Neurosci. 368160-8173 (2016).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • Lighthill, J. Flow of Energy in the Cochlea. J. Fluidmech. 106149-213 (1981).

    Article Google Scholar

  • Lighthill, J. Acoustic streaming in the ear itself. J. Fluidmech. 239551 (1992).

    Article Google Scholar

  • Karavitaki, KD & Mountain, DC Imaging of Electrically Evoked Micromechanical Motion in the Organ of Corti of the Excised Gerbil Cochlea. biophys. J. 923294-3316 (2007).

  • Frost, BL, Strimbu, CE & Olson, ES Use of volumetric optical coherence tomography to obtain spatially resolved Corti vibration measurements. J.Acoust. society Am. 1511115-1124 (2022).

    Article PubMed Google Scholar

  • He, W., Kemp, D. & Ren, T. Timing of reticular lamina and basilar membrane vibration in living gerbil-cochleae. elf 7e37625 (2018).

    Article PubMed PubMed CentralGoogle Scholar

  • Müller, M. The cochlear spatial frequency map of the adult and developing Mongolian gerbil. Listen. resolution. 94148-156 (1996).

  • de La Rochefoucauld, O. & Olson, E. S. The role of the organ of Corti’s mass in passive cochlear tuning. biophys. J 933434-3450 (2007).

    Article PubMed Google Scholar

  • Rhode, WS & Recio, A. Investigation of mechanical movements in the basal region of the chinchilla cochlea. J.Acoust. society Am. 1073317-3332 (2000).

    Article CAS PubMed Google Scholar

  • van der Heijden, M. & Joris, PX Panoramic measurements of the tip of the cochlea. J. Neurosci. 2611462-11473 (2006).

    Article PubMed PubMed CentralGoogle Scholar

  • Meenderink, SWF, Lin, X., Park, BH, & Dong, W. Sound-induced vibrations deform the organ of Corti complex in the low-frequency apical region of the gerbil-cochlea for normal hearing. J. Assoc. Resolution otolaryngol. 23579-591 (2022).

  • Emadi, G., Richter, C.-P. & Dallos, P. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J. Neurophysiol. 91474-488 (2004).

    Article PubMed Google Scholar

  • Meenderink, SWF, Shera, CA, Valero, MD, Liberman, MC & Abdala, C. Morphological immaturity of the neonatal organ of Corti and associated structures in humans. J. Assoc. Resolution otolaryngol. 20461-474 (2019).

    Article PubMed PubMed CentralGoogle Scholar

  • Pujol, R., Lenoir, M., Ladrech, S., Tribillac, F. & Rebillard, G. Correlation between outer hair cell length and cochlea frequency encoding. in the Auditory Physiology and Perception 45-52 (Elsevier, 1992).

  • Zetes, DE, Tolomeo, JA & Holley, MC Structure and mechanics of supporting cells in the guinea pig organ of Corti. Plus one 7e49338 (2012).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • van der Heijden, M. Frequency selectivity without resonance in a liquid waveguide. Proc. Natl. Acad. Science. 11114548-14552 (2014).

    Article PubMed PubMed CentralGoogle Scholar

  • Narayan SS, Temchin AN, Recio A & Ruggero MA Frequency matching of basilar membrane and auditory nerve fibers in the same cochleae. Science (1979) 2821882-1884 (1998).

    CAS Google Scholar

  • Ruggero MA, Narayan SS, Temchin AN & Recio A. Mechanical basis of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar membrane vibrations and auditory nerve fiber responses in chinchilla. Proc. Natl. Acad. Science. 9711744-11750 (2000).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • Choma MA, Ellerbee AK, Yang C, Creazzo TL & Izatt JA Phase microscopy in the spectral domain. Option. Latvian. 301162-1163 (2005).

    Article PubMed Google Scholar

  • Meenderink, SWF & van der Heijden, M. Reverse cochlear propagation in the intact gerbil cochlea: evidence for slow-traveling waves. J. Neurophysiol. 1031448-1455 (2010).

    Article PubMed Google Scholar

  • Versteegh, CPC & van der Heijden, M. Basilar Membrane responses to tones and tone complexes: nonlinear effects of stimulus intensity. J. Assoc. Resolution otolaryngol. 13785-798 (2012).

    Article PubMed PubMed CentralGoogle Scholar

  • Meenderink, SWF & Dong, W. The vibrations of the organ of Corti are dominated in vivo by longitudinal movements (Figshare data store, 2022).

  • Leave a Comment